lunes, 26 de noviembre de 2012

Pronóstico

Pronóstico



Es es proceso de estimación en situaciones de incertidumbre.




Método de los promedios móviles

El movimiento medio de orden N de una seria de valores y1, y2, y3.... yn se define por la sucesión de valores correspondientes a las medidas aritméticas:


Suavización exponencial

Este método contiene un mecanismo de autocorrección que ajusta los pronósticos en dirección opuesta a los errores pasados. Es un caso particular de promedios móviles ponderados de los valores actuales y anteriores en el cual las ponderaciones disminuyen exponencialmente. Se emplea tanto para suavizar como para realizar pronósticos. Se emplea la siguiente fórmula:



Regresión Lineal





Regresión Lineal


Es un método matemático que  modela la relación entre una variable dependiente y, las variables independientes Xi y un término aleatorio E.








MODELO REGRESIÓN LINEAL SIMPLE





El modelo de regresión lineal simple, busca encontrar la recta de regresión que relacione dos variables (X e Y)   de forma que 

   Y = β0 + β1• X + error


ANÁLISIS DE REGRESIÓN

Pretende  predecir o estimar el valor promedio de la variable explicada en base a unos valores fijos de las variables explicativas. En el análisis de regresión, las variables explicativas son fijas y la variable explicada es estocástica.

HIPÓTESIS DEL MODELO

- La variable Y se relaciona lineal mente con la variable X 
- La variable Y   es cuantitativa y aleatoria 
- Los errores son independientes entre si

CORRELACIÓN

Es el grado de dependencia mutua entre las variables, y mide la intensidad de su relación.

En otras palabras, el análisis de correlación trata de averiguar el grado o fuerza de influencia que tienen las variables explicativas (una o más) en la variable dependiente o explicada. 

El coeficiente de correlación es llamado “r”,   y su fórmula es:

r = Sxy / Sx • Sy    cuyo valor siempre será 1 o -1

Tablas de distribución

Valor P

 
 
VALOR P
 
Puede considerarse como el valor límite para que un contraste sea significativo, es decir, elegido un nivel se significancia α, se rechazará H0 si P < α.

Proporción

PROPORCIÓN
 
Es la media de estadística descriptiva que más se usa. Es el número de observaciones con una característica en particular entre la población de referencia.
 
El numerador siempre está incluido en el denominador.
 
Se expresa en porcentaje.

Formulas para proporciones

Proporción muestral:



Error:

Intervalo de Confianza

Estadístico de prueba para una población.



 

Estadístico de prueba para dos población.
 
 

Prueba de Hipótesis II

Regla de decisión
Se establece las condiciones específicas en la que se rechaza la hipótesis nula y las condiciones en que no se rechaza la hipótesis nula.
Valor Crítico
Es el punto de división entre la región en la que se rechaza la hipótesis nula y la región en la que no se rechaza la hipótesis nula.
 
 
 
 
 
Estadístico de Prueba para una población
Para la media (μ), cuando se conoce la desviación estándar (σ) poblacional, o cuando el valor de la muestra es grande (30 o más), el valor estadístico de prueba es z y se determina a partir de:

El valor estadístico z, para muestra grande y desviación estándar poblacional desconocida se determina por la ecuación:

En la prueba para una media poblacional con muestra pequeña y desviación estándar poblacional desconocida se utiliza el valor estadístico t
 
Estadístico de Prueba para dos poblaciones

Cuando la  desviación estándar poblacional es conocida.




 
 
Cuando la desviación estándar poblacional es desconocida.  
 
 Grados de libertad para dos poblaciones con desviación desconocida

 
 
 Intervalo de confianza
 
 
 

Prueba de Hipótesis


Hipótesis

Afirmación acerca de los parámetros de la población.

Prueba de Hipótesis
 Es un procedimiento basado en la evidencia muestral y la teoría de probabilidad; se emplea para determinar si la hipótesis es una afirmación razonable.
Pasos

Tipos de Hipótesis
  • H0 se llama hipóteis nula :Es aquella que nos dice que no existen diferencias significativas entre los grupos.
  • H1 se llama hipótesis alternativa: Es aquella que nos dice que existen diferrencias significativas entre los grupos (suele llevar los signos distinto, mayor y menor).
Tipos de Errores
  • Un error tipo I se presenta si la hipótesis nula Ho es rechazada cuando es verdadera y debía ser aceptada. La probabilidad de cometer un error tipo I se denomina con la letra alfa  α.
  • Un error tipo II, se denota con la letra griega β se presenta si la hipótesis nula es aceptada cuando de hecho es falsa y debía ser rechazada
  • Tipos de Pruebas
  • Bilateral: En la hipótesis alternativa aparece el signo distinto.
  • Unilateral: En la hipótesis alternativa aparece o el signo > o el signo <.

Nivel de Significancia  

Probabilidad de rechazar la hipótesis nula cuando es verdadera. Se le denota mediante la letra griega α, tambiιn es denominada como nivel de riesgo, este termino es mas adecuado ya que se corre el riesgo de rechazar la hipótesis nula, cuando en realidad es verdadera. Este nivel esta bajo el control de la persona que realiza la prueba.